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Renormalised perturbation series 
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Abstract. Renormalised perturbation series are obtained directly (by the hypervirial 
method) for the perturbed oscillator and hydrogen atom, and indirectly (by series trans- 
formation) for the helium atom. 

In the study of the perturbed Hamiltonian H = T + U + A V, where T is the kinetic 
energy operator and U and V are local potential operators, the most commonly treated 
perturbation series is that for the energy 

E =E E,,A“. 

The perturbed expectation value of any other operator A can be similarly written 

( A )  = E A,A‘ (2) 

but in general higher order perturbed wavefunctions are needed to calculate A,, than to 
calculate E,, for given n. Killingbeck (1977) discussed ways in which the calculation of 
A1 and A2 can be simplified using interchange theorems. The first point which we wish 
to make in this note is that for particularA it is possible to make more headway; we can 
illustrate this for the example of the Hamiltonian 

H = - D ’ + m x 2 + A x 4  (3) 

studied (with m = 1) by Reid (1967) and Simon (1970) and many other workers. For 
the case m = 1 the Hellmann-Feynman theorem shows that ( x 4 )  = aE/dA, so the series 
for ( x 4 )  is obtained by formally differentiating the energy series. The virial theorem 
states that E = 2 ( x 2 ) + 3 A ( x 4 ) ,  so that the series for ( x 2 )  follows from those for E and 
(x ‘ ) .  The energy equation E = ( H )  then allows the ( T )  series to be found from the three 
series already known. Thus the energy series directly yields the series for ( T ) ,  (x ’ )  and 
( x 4 ) ,  and the series for ( x 6 )  etc. then follow by using hypervirial relations. This 
observation would have considerably simplified the calculations of Reid (1967), who 
computed the series for ( T )  and (x ’ )  by a method which required the off-diagonal 
matrix elements of these operators between the unperturbed states. 

Recently Grubb (1980) tried to attack the problem of calculating the coefficients A,, 
by using commutator algebra, and encountered most of the difficulties pointed out by 
Killingbeck (1977). Grubb (1980) did not complete the calculation of A 1  for her 
perturbed hydrogen atom example, and apparently overlooked the fact that her 
quadrature expressions for the first-order perturbed wavefunction are only valid for 
ground states, as discussed, for example, by Killingbeck (1977) and Aharonov and Au 
(1979). The second point which we make here is that for perturbed hydrogen atom and 
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perturbed oscillator problems the A,, for many operators can be obtained using a 
formalism which is based on commutators and which does not need the explicit 
calculation of perturbed wavefunctions. The method which achieves this is the hyper- 
virial method (Swenson and Danforth 1972, Killingbeck 1978, Caswell 1979, Austin 
1980), which is the ultimate refinement of the argument used in the previous paragraph. 

The third and main point of this note is to report some remarkable results which 
have been obtained using the hypervirial method. We can most clearly describe them 
by using the Hamiltonian (4), and rewriting it as 

(4) 
with p = m + AK. If the values of K and p (for particular A )  are fixed numerically, then 
the hypervirial method permits direct evaluation of the coefficients in the expansions 

H = - 0' + / L X  + A [ x 4  - Kx2] 

E = ~ E , ( A , K ) A "  ( 5 )  

and 

( x ' )  = 1 A:(/\ ,  K)A" 

All previous applications of the hypervirial method have found the series for K = 0, 
although Caswell (1979) found the series for non-zero K by performing a trans- 
formation on the K = 0 series. He dealt only with the energy series for the Hamiltonian 
(4). In fact the series (5) and (6) can be calculated directly from the hypervirial 
equations for the Hamiltonian (4) and also for a perturbed hydrogen atom Hamiltonian 
such as (for s states) 

H =  -1 2D2-Zr-1+Ar 

(7) 
1 2 -1  =-?D -pr  +A[r-Kr-l] 

with /L = 2 - AK. (States of higher 1 can be handled by including a centrifugal potential 
term.) The details of the hypervirial method have been discussed in the cited works, so 
we give only a brief sketch in this note. The bound state functions of the Hamiltonian 

H = - ~ D ~ + v  (8) 

give expectation values which obey the hypervirial relation 

0 = ;(~(f''') + 2( f ' (E  - V ) )  - (fv') (9) 

where f is any smooth function and E is the energy. Making the choice f = x N + l  in (9), 
taking V from equation (4) or (7), and expanding all quantities as series in A ,  we obtain 
an infinite hierarchy of equations for the coefficients E,, and A:. These equations can be 
solved sequentially and rapidly on a mini-computer, provided that Eo is known. Eo 
equals (m +AK)"2 for the groundstate of Hamiltonian (4) and -$(Z -AK)2 for the 
groundstate of Hamiltonian (7). 

The exact results for the Hamiltonians (4) and (7) are independent of K, so we take 
as a plausible criterion the following one: if S N ( K )  is the sum (up to the A N  term) of the 
series for any quantity, then K is chosen so that dSAT/dK = 0. It turns out that SN for 
alternate N has an extremum in K (so that the criterion works) while for the intervening 
N the quantity ldSN/dK 1 shows a clear (but non-zero) minimum. The results for a few 
sets of parameters are shown in tables 1 and 2. (The exact results were obtained by an 
accurate numerical integration). We note for comparison that the [20, 201 Pad6 
approximant for the m = 1 oscillator energy at A = 1 is 1.3923375 (as derived from the 
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Table 1. Perturbed oscillator energy and K values. 

6 1.392 342 02 (4.10) 2.449 101 59 (2.01) 0.657 467 43 (4.11) 
8 1.392 350 91 (3.80) 2.449 166 74 (1.87) 0.657 607 83 (4.47) 

10 1.392 351 56 (4.20) 2.449 173 07 (2.06) 0.657 645 50 (4.87) 
12 1.392 351 64 (4.55) 2.449 174 01 (2.25) 0.657 653 54 (5.25) 
Exact 1.392 351 64 2.449 174 07 0.657 653 0 

Table 2. Perturbed oscillator ( x 2 )  and K values 

N ( m , A )  (1, 1) (1,10) (-191) 

6 0.305 832 22 (4.44) 0.161 486 49 (2.17) 0.451 044 5 (4.24) 
8 0.305 814 74 (3.94) 0.161 457 47 (1.94) 0.450 803 9 (4.60) 

10 0.305 813 78 (4.31) 0.161 455 28 (2.12) 0.450 736 6 (4.99) 
12 0.305 813 65 (4.75) 0.161 454 93 (2.31) 0.450 721 8 (5.40) 
Exact 0.305 813 9 0.161 459 9 0.450 726 1 

K = 0 energy series); the renormalised series is obviously much better even without the 
use of any summation procedure. The oscillator results for m = -1 are particularly 
interesting, since an attempt to find the K = 0 series would start from an unperturbed 
Hamiltonian with no bound states, for which Eo could not be specified. The renor- 
malised series, however, is based on a K value which renders m + AK positive, and gives 
good results. However, we could not make the method work for the hydrogenic 
problem with negative Z, which is puzzling, since, for example, a direct numerical 
integration at 2 = -1, A = 0.1 gives a well-defined bound state with energy 0.762246. 
The low-order results shown in tables 1 and 2 look very promising, but in principle we 
expect that even the renormalised series are ultimately divergent; a double precision 
computation to high order will be needed to investigate this point. Another puzzling 
feature for the H atom case is the superiority of the N = 6 and N = 10 results to the 
others. It remains to be seen whether some other criterion for choosing K will remove 
this irregularity. 

For the two-electron atom groundstate problem, with Hamiltonian 

H =  -$[V:+Vz]-Z(r; '  +r; ')+Ar;i  

= T-(Z-AK)(rT1 + r ; ' ) + A [ r ; i  -K(rT1 + r Y ' ) ]  (10) 

the energy perturbation series can be written in the equivalent forms 

The E,, were found by Midtdal(l965) using variational methods; so far i t  has not been 
possible to find the E,, by the hypervirial method. Comparing coefficients in equation 
(1 1) we quickly find that the sum up to the A term is K-independent. Further we find 
that 

&3=E3; ~4 = E4- KE3 (12) 

E S  = Es - 2 KE4 + K2E3 (13) 
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with the general rule that the coefficients in & N + 3  are those for the binomial expansion of 
(1 - x)". Table 3 shows that the renormalised energy series is superior to the K = 0 
series for this problem also. Of course, the series (1 1) is convergent here, whereas those 
arising from the two preceding problems were not. 

Table 3. Perturbed H atom energy and K values. 

N ( Z A )  (1,0.2) ~ 0 . 4 )  

6 -0.235 647 52 (-1.95) -0.008 352 86 (-1.48) 
8 -0.235 644 35 (-2.83) -0.008 320 16 (-2.07) 

10 -0.235 647 43  (-2.27) -0.008 359 44 (-2.05) 
12 -0.235 647 81 (-3.67) -0.008 352 55 (-2.04) 
Exact -0.235 647 41 -0.008 3.53 65 

Table 4. Perturbed H atom ( r )  and K values. 

6 1.204 594 9 (-2.12) 1.080 909 5 (-2.10) 
8 1.204 564 5 (-2.83) 1.079 733 6 (-2.07) 

10 1.204 596 5 (-2.41) 1.079 993 3 (-2.06) 
12 1.204 540 5 (-4.67) 1.079 933 2 (-2.05) 
Exact 1.204 595 1.079 945 

Table 5. Energy sums for the Helium atom ( Z  = 2, A = 1). 

N 5 7 9 
K 0.26 0.34 0.40 
E -2.903 704 9 -2.903 723 7 -2.903 724 3 
E ( K = O )  -2.903 668 6 -2.903 718 6 -2.903 723 6 

('Exact' energy is -2.903 724 4) 
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